
J Sched (2014) 17:185–197
DOI 10.1007/s10951-013-0338-9

A branch-and-price algorithm for the multi-activity multi-task
shift scheduling problem

Vincent Boyer · Bernard Gendron ·
Louis-Martin Rousseau

Received: 13 April 2012 / Accepted: 27 May 2013 / Published online: 12 June 2013
© Springer Science+Business Media New York 2013

Abstract The multi-activity multi-task shift scheduling
problem requires the assignment of interruptible activities
and uninterruptible tasks to a set of employees in order to
satisfy a demand function. In this paper, we consider the
personalized variant of the problem where the employees
have different qualifications, preferences, and availabilities.
We present a branch-and-price algorithm to solve this prob-
lem. The pricing subproblems in column generation are for-
mulated with context-free grammars that are able to model
complex rules in the construction of feasible shifts for an
employee. We present results for a large set of instances
inspired by real cases and show that this approach is suf-
ficiently flexible to handle different classes of problems.

Keywords Multi-activity multi-task shift scheduling
problem · Precedence constraints · Branch-and-price ·
Context-free grammar

V. Boyer · B. Gendron · L.-M. Rousseau
Centre interuniversitaire de recherche sur les réseaux
d’Entreprise, la logistique et le transport,
Université de Montréal, C.P. 6128,
succursale Centre-ville, Montreal, QC H3C 3J7, Canada

B. Gendron
e-mail: bernard.gendron@cirrelt.ca

L.-M. Rousseau
e-mail: louis-martin.rousseau@cirrelt.ca

Present Address:
V. Boyer (B)
Graduate Program in Systems Engineering,
Universidad Autónoma de Nuevo León (UANL),
66451 San Nicolás de los Garza, Nuevo Leon, Mexico
e-mail: vincent.a.l.boyer@gmail.com

1 Introduction

Shift scheduling requires the assignment of a sequence of
activities and tasks to a set of employees for each time
period in a planning horizon. A shift consists of a contin-
uous sequence of activities and tasks, which may include
breaks and a lunch-break. The content of a shift is gener-
ally constrained by rules arising from regulation agreements
and ergonomic considerations. In this paper, we consider the
shift scheduling problem with multiple activities and multi-
ple tasks where all the employees are different, i.e., they can
perform only a subset of the activities and tasks and have
different periods of availability.

Activities represent daily operations in a company, such
as assisting customers. There is a demand that should be met,
and the undercovering of this demand reflects the quality of
service provided by the company. An activity can be inter-
rupted and can be assigned to several employees at the same
time.

Tasks represent small but essential operations, such as
unloading cargo or preparing a stall, and there is a large
penalty for uncovering them. Tasks have a fixed length and
there are usually hard constraints on their completion time
and on the sequence in which they should be executed. They
must be executed without interruption by a fixed number of
employees.

To the best of our knowledge, few papers in the litera-
ture have addressed this problem. However, the personnel
scheduling problem is a well-known problem of operations
research and has been widely studied. The surveys of Ernst et
al. (2004a,b) give many references, but few of them consider
simultaneous activity and task assignment.

Demassey et al. (2006) study the multi-activity case for
a 24-h planning horizon with up to ten activities. They use
a set covering formulation and apply a column generation

123

186 J Sched (2014) 17:185–197

approach where the pricing subproblem is solved with con-
straint programming. The results show that this method can
solve instances with only up to three activities.

Lequy et al. (2010a) present two integer programming
(IP) models and a column generation approach based on
multi-commodity flow formulations for the multi-activity
shift scheduling problem where shifts and breaks are assigned
a priori to the employees. These models lead to very large
IPs, and the authors propose rolling-horizon heuristics based
on column generation for the largest instances. Lequy et al.
(2010b,c) extend their approach to the multi-task case and
consider the possibility that a task could be performed by
more than one employee with synchronization. Two-stage
heuristics are proposed: first, the tasks, and then, the activi-
ties are assigned to the employees.

The present work is an extension of Côté et al. (2011a,
2011b, 2012). They propose a grammar-based model for the
personalized multi-activity shift scheduling problem and a
branch-and-price (B&P) approach with column generation
to solve this problem. The results show that this approach can
handle instances with up to 100 employees and 15 activities
for a planning horizon of 7 days when the working periods
are preassigned to employees. We extend this approach to
include tasks with precedence constraints, and we present
an extensive study of branching strategies. Furthermore, we
present results for instances where the starting and ending
times of a shift are not known a priori.

In the literature, column generation Desaulniers et al.
(2005) and B&P Barnhart et al. (1998) approaches have
been used with success to solve complex problems [see for
instance Akker et al. (1999), Barnhart et al. (2000), Contr-
eras et al. (2011), Tang et al. (2007), Tang et al. (2011)]. As a
result, many different models have been proposed. As shown
by Côté et al. (2011a), the flexibility provided by context-free
grammars allows to encode all work regulation rules and
simplifies the modelling of multi-activity shift scheduling
problems. Furthermore, the good results obtained by these
authors show the efficiency of this approach for solving com-
plex scheduling problems. To the best of our knowledge,
the present paper along with Lequy et al. (2010c) represent
the first attempts at solving the multi-activity and multi-task
case. However, Lequy et al. present a heuristic method for
the case where the shifts already exist, while we propose an
exact approach that does not require the preexistence of the
shifts.

This paper is organized as follows. In Sect. 2, we present
our mathematical model for the personalized multi-activity
multi-task shift scheduling problem. In Sect. 3, we introduce
grammar theory and show how it is used to construct feasible
shifts for each employee. Section 4 deals with the general
framework of the proposed grammar-based B&P algorithm.
Finally, in Sect. 5, we present computational results for a set
of instances inspired by real cases.

2 The shift scheduling problem (SSP)

In the personalized multi-activity multi-task SSP, we must
assign to each employee e ∈ E a feasible shift s ∈ Ωe, where
Ωe is the set of shifts that can be assigned to the employee e,
to cover at a minimum cost the demand for activities and tasks
over a planning horizon I . We assume that each employee
has different characteristics and thus can perform only a sub-
set of the activities A and tasks T . Different employees have
different availabilities over the planning horizon. The set of
feasible shifts for each employee is determined by these char-
acteristics and also by rules arising from work agreement reg-
ulations or ergonomic considerations. We use the term job to
refer to either an activity or a task.

We consider that the planning horizon is divided into peri-
ods of equal length. In this context, a shift is a sequence of
jobs corresponding to a continuous presence at work (that
may include lunch and breaks). This definition of a shift is
illustrated in Example 1.

Example 1 We consider a planning horizon divided into peri-
ods of 1 h. We denote by a and b two different activities and
by l a lunch period. Then the shift s=aaaalbbbb represents
4 h of activity a, followed by 1 h of lunch l, followed by 4 h
of activity b.

With each shift s ∈ Ωe we associate a cost ce
s ≥ 0. This

can include different components, such as the cost for an
employee to perform a job and the cost of transition from
one job to another. Furthermore, we allow undercovering
for activities and tasks and overcovering only for activities,
since tasks cannot be repeated. Let cu

ia and co
ia be the costs

for undercovering and overcovering, respectively, an activity
a ∈ A at period i ∈ I and let cu

t be the cost for undercovering
a task t ∈ T .

We assume that the demand bia for activity a ∈ A is
known at period i ∈ I .

2.1 Mathematical formulation

Our model for the personalized multi-activity multi-task SSP,
noted (D), is an extension of that of Côté et al. (2011b),
who used a classical set-covering formulation introduced by
Dantzig (1954) for the shift scheduling problem:

f (D) = min
∑

e∈E

∑

s∈Ωe

ce
s xe

s +
∑

i∈I

∑

a∈A

(
cu

iauia + co
iaoia

)

+
∑

t∈T

cu
t ut (1)

subject to :
∑

e∈E

∑

s∈Ωe

δe
ias xe

s + uia − oia = bia ∀i ∈ I, a ∈ A (2)

∑

i∈I

∑

e∈E

∑

s∈Ωe

βe
i ts xe

s + ut = 1 ∀t ∈ T (3)

123

J Sched (2014) 17:185–197 187

∑

s∈Ωe

xe
s = 1 ∀e ∈ E (4)

xe
s ∈ {0, 1} ∀e ∈ E, s ∈ Ωe

(5)

uia ≥ 0, oia ≥ 0 ∀i ∈ I, ∀a ∈ A

(6)

ut ≥ 0 ∀t ∈ T, (7)

where:

– δe
ias = 1 if activity a ∈ A is assigned at period i ∈ I

in shift s ∈ Ωe for employee e ∈ E , and δe
ias = 0

otherwise;
– βe

i ts = 1 if task t ∈ T starts at period i ∈ I in shift
s ∈ Ωe for employee e ∈ E , and βe

i ts = 0 otherwise;
– xe

s = 1 if employee e ∈ E is assigned to shift s ∈ Ωe,
and xe

s = 0 otherwise;
– uia and oia represent the undercovering and overcovering

at period i ∈ I of activity a ∈ A; and
– ut is the variable associated with the undercovering of

task t ∈ T .

The objective (1) is composed of the cost of assigning a shift
to the employee, the cost for undercovering and overcovering
activities, and the cost for undercovering tasks. Constraints
(2) and (3) represent the satisfaction of the demand for activ-
ities and tasks in the planning horizon. Constraint (4) insures
that only one shift is assigned to each employee.

2.2 Precedence constraints

If there are precedence constraints, i.e., constraints on the
sequence of tasks, further constraints must be added to model
(D). For a task t ∈ T , we denote by lt its fixed length and by
P(t) the set of tasks that should be performed before t . In a
shift we know the start and end times of a task, so one way
to formulate these constraints is to assume that task t ∈ T
cannot be assigned at period i ∈ I if the tasks in P(t) have
not been assigned and finished:
∑

e∈E

∑

s∈Ωe

βe
i ts xe

s −
∑

i ′+lt ′≤i

∑

e∈E

∑

s∈Ωe

βe
i ′t ′s xe

s ≤ 0,

∀i ∈ I, ∀t ∈ T, ∀t ′ ∈ P(t) �= ∅. (8)

Lequy et al. (2010b) propose another formulation for the
precedence constraints that reduces the total number of con-
straints:

−Mut −
∑

i∈I

∑

e∈E

∑

s∈Ωe

iβe
i ts xe

s + Mut ′

+
∑

i∈I

∑

e∈E

∑

s∈Ωe

(i + lt ′)β
e
i t ′s xe

s ≤ 0, ∀t ∈ T, t ′ ∈ P(t), (9)

where M is a sufficiently large integer.
In general, constraints (8) are more explicit, so they yield

better bounds than constraints (9). However, the latter lead to

a model with fewer constraints that can be solved more effi-
ciently. We consider both formulations in our computational
study.

3 Modeling shifts with grammars

To solve the above model directly, we need to know all the
feasible shifts for each employee. Côté et al. (2011a,b, 2012)
use a formal language based on a context-free grammar to
represent these shifts.

3.1 Context-free grammar

A context-free grammar G is defined by the tuple (Σ, N , P,

S) where:

– Σ is an alphabet that contains letters (a, b, c, ...), also
called terminal symbols;

– N is a set of nonterminal symbols (A, B, C, . . .);
– P is a set of productions of the form X → α, where X ∈

N and α is a sequence of terminal and/or nonterminal
symbols;

– S is the starting nonterminal.

A sequence of letters from the alphabet Σ , called a word, is
recognized by the grammar G if it can be generated by the
successive application of productions from P , starting from
the starting nonterminal S. The set of words recognized by
a grammar is called a language. A context-free grammar is
in Chomsky normal form when all productions are of the
form X → α where X ∈ N and α ∈ (N × N) ∪ Σ . Any
grammar can be converted to this form (see Hopcroft et al.
(2001)). However, for the sake of clarity, we will not present
the grammars in Chomsky normal form.

A word can represent a sequence of activities, tasks, and
breaks, which corresponds to a shift. Hence, the words recog-
nized by the grammar are feasible shifts for an employee.
The length of the word corresponds to the planning horizon
considered.

Example 2 (see Côté et al. (2011b)): The following grammar
G defines all feasible shifts for one employee and one activity.
A shift has a length equal to the planning horizon and contains
one break that cannot be placed at the beginning or end of
the shift. Work and break periods are represented by j and b
respectively:

G = (Σ = (j, b), N = (S, X, J, B), P, S) where P is

S → J B J, J → J J | j, B → b

In the grammar, the symbol | specifies a choice of production.
The non-terminal J and B represent, respectively, a sequence
of jobs and a sequence of breaks.

123

188 J Sched (2014) 17:185–197

Fig. 1 DAG � for grammar
from Example 2 on word of
length 4

The shifts jbj, j j j j jbj , and jbj j , among others, are recog-
nized by G.

3.2 Directed acyclic graph

All the derivations that a grammar associates with a word of
a given length n can be represented by the directed acyclic
graph (DAG) �. This DAG has an and-or structure with two
types of nodes:

– the or-nodes O represent the nonterminal symbols from
N ; and

– the and-nodes A represent the productions from P .

We denote by Oπ
il the or-node associated with the nontermi-

nal or letter π that generates a subsequence of length l from
position i . Hence, if π ∈ Σ , the or-node is a leaf and l = 1,
and the root is represented by O S

1n . Likewise, A	,k
il is the

and-node associated with the production 	 that generates a
subsequence of length l from position i , with k representing
the index of the subsequence. A DAG is built by a procedure
suggested by Quimper and Walsh (2007) that is inspired by an
algorithm from Cooke, Younger, and Kasami (see Hopcroft
et al. (2001)). Figure 1 shows the DAG for the grammar in
Example 2 for a word of length 4.

To derive words from the DAG �, we start at the root O S
1n .

An or-node Oπ
il is visited by selecting exactly one child,

which is an and-node, and an and-node A	,t
il is visited by

selecting all its children. � is traversed in this way until the
only unvisited nodes are leaves. The visited leaves define a
word recognized by the grammar. Likewise, starting from the
leaves associated with a wordw, we can traverse� backwards
to check if this word belongs to the grammar.

3.3 Enriched grammar

The productions of a grammar can be enriched in order to
include more constraints in the derivation of a word and thus
the construction of the associated DAG. These constraints
appear in the SSP when some jobs must be done within a time
window or there are restrictions on their minimum and max-
imum durations. The notation A[tws, twe]

[lmin, lmax]
c−→ BC indicates

that the subsequence generated from A should be spanned
within the positions [tws, twe], has a length between lmin
and lmax , and, if it is used, has a cost of c.

Example 3 The grammar G below defines the feasible shifts
for one employee and a set of activities A. A shift has between
3 and 8 h of activities, including breaks b of 15 min, and,
a lunch-break l if the employee works more than 6 h. The
minimum duration of an activity is 1 h. The planning horizon
is divided into periods of 15 min:

S → R P R | RF R Ja → a | a Ja, ∀ a ∈ A
P[12,24] → JbJ L → llll
F[28,36] → P L P R → r |r R
J [twsa ,twea]
[4,∞] → Ja, ∀ a ∈ A

where [twsa, twea] represents the time window associated
with activity a ∈ A.

In this grammar, the non terminal P represents a sequence
of jobs of 3–6 h including a 15-min break, and the nontermi-
nal F represents a sequence of jobs of 6–8 h, plus a lunch L of
1 h. Furthermore, as the starting time of the shift is unknown,
we introduce the artificial activity r , spanned from the non-
terminal R, to represent the rest periods before and after a
shift.

123

J Sched (2014) 17:185–197 189

Fig. 2 DAG � for grammar
from Example 4

3.4 Productions of tasks

A task t ∈ T is fully defined by its length lt and its associated
time window [twst , twet]. With the enriched grammar, we
can define a task as the span of an activity with a fixed length
and a time window. Therefore, the productions associated
with the span of a task t ∈ T can be defined as

Jt
[twst ,twet][lt ,lt] → J ′

t ,

J ′
t → t | t J ′

t .

As we have constraints on the length of the task t , i.e.,
exactly lt , the nonterminal J ′

t is used in order to introduce
this rule in the production of the task.

Example 4 We consider a shift of 4 h divided into periods of
1 h with the start time of the shift fixed a priori. An employee
can perform an activity a or a task t at each period. The
length of task t is 3 h. The associated grammar is defined by
the following productions:

S[4,4] → Ja | Ja Jā | Jt Jt̄ Ja → a | a Ja,

Jt̄ → Ja Jā | Ja J ′
t → t | t J ′

t
Jā → Jt Jt̄ | Jt

Jt [3,3] → J ′
t

In this grammar, for j ∈ {a, t}, the nonterminal J j rep-
resents a span of the job j , and J j̄ , a span of a sequence of
jobs not starting with the job j . This representation allows
to model the transition between the jobs. The corresponding
DAG is given in Fig. 2.

However, for the column generation approach, we need
to identify in the grammar the beginning of a task so that

the precedence constraints can be applied. With the previous
productions involved in the span of a task, the corresponding
terminals in the DAG represent one period of this task. To
determine the starting period of a task t ∈ T , we use a dif-
ferent label in the DAG for the first period of the span, i.e.,
st . The productions are then rewritten as follows:

Jt
[twst ,twet][lt ,lt] → st J ′

t | st ,

J ′
t → t | t J ′

t .

4 Grammar-based B&P algorithm

We now present the grammar-based B&P algorithm to solve
the multi-activity multi-task SSP. Enumerating all possible
shifts for each employee and solving the model (D) directly
leads to a problem with a large number of variables that is, in
practice, too hard to solve. Therefore, at each iteration of the
B&P algorithm we solve the linear relaxations of a sequence
of restrictions of model (D), called the restricted master prob-
lems (RM Ps), via a column generation approach.

4.1 Restricted master problem

The RM P is defined by allowing only a subset of the feasible
shifts Ω̃e ⊂ Ωe for each employee e ∈ E , as follows:

f (RM P) = min
∑

e∈E

∑

s∈Ω̃e

ce
s xe

s

+
∑

i∈I

∑

a∈A

(
cu

iauia + co
iaoia

) +
∑

t∈T

cu
t ut (10)

123

190 J Sched (2014) 17:185–197

subject to :
∑

e∈E

∑

s∈Ω̃e

δe
ias xe

s + uia − oia = bia ∀i ∈ I, a ∈ A (11)

∑

i∈I

∑

e∈E

∑

s∈Ω̃e

βe
i ts xe

s + ut = 1 ∀t ∈ T (12)

∑

s∈Ω̃e

xe
s = 1∀e ∈ E (13)

xe
s ≥ 0 ∀e ∈ E, s ∈ Ω̃e (14)

uia ≥ 0, oia ≥ 0 ∀i ∈ I, ∀a ∈ A (15)

ut ≥ 0 ∀t ∈ T . (16)

If there are precedence constraints, we also require con-
straints (8) or (9):
∑

e∈E

∑

s∈Ω̃e

βe
i ts xe

s −
∑

i ′+lt ′≤i

∑

e∈E

∑

s∈Ω̃e

βe
i ′t ′s xe

s ≤ 0,

∀i ∈ I, ∀t ∈ T, ∀t ′ ∈ P(t) �= 0 (17)

or

−Mut −
∑

i∈I

∑

e∈E

∑

s∈Ω̃e

iβe
i ts xe

s + Mut ′

+
∑

i∈I

∑

e∈E

∑

s∈Ω̃e

(i + lt ′)β
e
i t ′s xe

s ≤ 0, ∀t ∈ T, t ′ ∈ P(t).

(18)

At each iteration of the column generation method, we
solve the current RM P and then for each employee we try
to identify columns with negative reduced costs by solving a
pricing subproblem. If no such columns are found, we have
obtained the optimal solution of the linear relaxation of (D)

by generating only a (typically small) subset of the feasible
shifts.

4.2 Pricing subproblem

To generate new columns for the RM P , we use the DAG to
represent the shifts that each employee can perform. For each
employee e ∈ E , a grammar Ge is formulated according to
the work regulations and the employee’s skills and availabil-
ities. The associated D AGe is then created, and it is used to
solve the pricing subproblem for employee e.

To compute the reduced cost of a column, we need the
dual variables of the current RM P . Let

– λia, i ∈ I, a ∈ A be the dual variables associated with
constraints (11);

– θt , t ∈ T be the dual variables associated with constraints
(12);

– σ e, e ∈ E be the dual variables associated with con-
straints (13).

We assume that the cost ce
s of the shift s ∈ Ω̃e for employee

e ∈ E can be decomposed as:

ce
s =

∑

i∈I

(
∑

a∈A

δe
iasce

ia +
∑

t∈T

βe
i tsce

it

)
, (19)

where ce
i j , j ∈ A ∪ T , is the cost for employee e to perform

job j at period i . The reduced cost of the shift s is then:

c̃e
s =

∑

i∈I

(
∑

a∈A

(ce
ia − λia)δe

ias

+
∑

t∈T

(ce
it − θt − rit)β

e
i ts

)
− σ e, ∀e ∈ E, s ∈ Ωe,

(20)

where, for i ∈ I, t ∈ T, rit is the term generated by the
precedence constraints.

If there are no precedence constraints, then rit =0, for i ∈
I, t ∈ T . Otherwise,

– rit =
∑

t ′∈P(t)

ξi t t ′ −
∑

i ′≥i+lt

∑

t ′∈P∗(t)
ξi ′t ′t if the precedence

constraints are represented by (17), where ξi t t ′, i ∈
I, t ∈ T, t ′ ∈ P(t), are the associated dual variables;

– rit = −
∑

t ′∈P(t)

iγt t ′ +
∑

t ′∈P∗(t)
(i + lt)γt ′t if the prece-

dence constraints are represented by (18), where γt t ′, t ∈
T, t ′ ∈ P(t), are the associated dual variables;

with P∗(t) = {t ′ ∈ T | t ∈ P(t ′)}.
To solve the pricing subproblem for employee e, we asso-

ciate a cost kia = ce
ia − λia, a ∈ A, with each leaf of the

DAG corresponding to the activity a performed at period
i ∈ I and a cost kit = (ce

it − θt − rit), t ∈ T , with each
leaf of the DAG corresponding to the task t starting at period
i ∈ I (labelled st in the grammar). The other nodes of the
graph have their costs initialized to zero. The subproblem is
then solved by a dynamic programming algorithm proposed
by Quimper and Rousseau (2009) to find a minimum parse
tree in a grammar-based DAG.

Starting from the leaves, we traverse the DAG and assign
to the visited and nodes the sum of the costs of their chil-
dren and to the or nodes the minimum of the costs of their
children. Hence, every child of the root node of the DAG
that has a negative cost represents a column with a neg-
ative reduced cost that can be added to the RM P . If no
such child exists for any employee, the solution of the cur-
rent RM P is the optimal solution of the linear relaxation,
because no column with a negative reduced cost can be
generated.

Note that the definition of the cost ce
s can be extended

because a cost can be assigned to some productions of the
grammar as defined in Sect. 3.3. These costs could represent,

123

J Sched (2014) 17:185–197 191

for instance, the transition cost for an employee to switch
from one activity or task to another. In the dynamic pro-
gramming algorithm, the corresponding and nodes would be
initialized with these transition costs, which would be added
to the total cost of the node.

4.3 Branching strategy

Since solving the RM P at each node of the B&P gives a frac-
tional solution, we must branch to derive an optimal integer
solution. Our branching strategy is based on that proposed
by Côté et al. (2011b), which is adapted from the strategy
presented by Barnhart et al. (2000) for solving integer multi-
commodity flow problems.

At each node of the B&P tree, we choose from the frac-
tional solution an employee e′ ∈ E with at least two assigned
shifts that have associated variables with fractional values. If
no such employee exists, then the solution is integer and the
exploration of this node is complete. Otherwise, we select
the two shifts se′

(1) and se′
(2) for which the correspond-

ing variables have the largest fractional values. We compare
these two shifts and find the first divergent position i ′, that
is, the first period where they differ in terms of the job. Let
j (1) ∈ A∪T and j (2) ∈ A∪T be the assigned jobs at period
i ′ in shifts se′

(1) and se′
(2), respectively. Let J e′

i ′ ⊂ A ∪ T
be the subsets of activities and tasks that can be performed
by employee e′ at period i ′. We create a partition of J e′

i ′ into

two subsets J e′
i ′ (1) and J e′

i ′ (2) such that j (l) ∈ J e′
i ′ (l), for

l ∈ {1, 2}. In practice, the remaining activities and tasks in
J e′

i ′ − { j (1), j (2)} are equally distributed between the two
partitions. Finally, we generate two nodes where each insures
that the employee e′ does not perform a job in J e′

i ′ (l) at period
i ′, for l ∈ {1, 2}.

This rule can be easily handled when solving the RMP
and the pricing subproblems. Indeed, it suffices to assign a
large value to the cost ce′

i ′ j where j is a forbidden job in J e′
i ′ (l)

for l ∈ {1, 2}. This insures that all shifts with the job j at
position i ′ lead to a positive reduce cost, hence these shifts
are never selected by the dynamic programming algorithm.
Then, we do not need to modify the pricing subproblems at
each step of the algorithm.

In Côté et al. (2011b), branching is performed by select-
ing the first employee e′ with a fractional value. We have
improved this approach by choosing se′

(1) such that its cor-
responding variable has the largest fractional value (clos-
est to 1). This tends to improve the convergence of the
algorithm toward an integer solution. We call this strategy
S1.

In the multi-task case, we can enhance this strategy by
preventing some tasks from starting at certain periods. The
goal is to first find a pattern for the position of the tasks
and then place the activities. We define a two-step branching
strategy where

– in the first step, we try to branch on the starting time of a
task; and

– in the second step, if branching on the tasks is not pos-
sible, we apply the branching strategy to the activities as
in S1.

In the fractional solution of the RMP, we identify two shifts
where the same task t ∈ T is assigned but it starts at different
periods, i(1) and i(2). Without loss of generality, consider
i(1) < i(2). We then create two nodes where in the first we
do not allow task t to start before i(2), and in the second we do
not allow task t to start after i(2). This branching insures that
these two shifts do not appear in the same solution. Moreover,
by reducing the time window where a task can be performed,
we try to position the tasks before assigning the activities.
We call this strategy S2.

This last branching strategy tries to reduce the time win-
dow associated with the tasks. Because the placement of the
tasks can have a significant impact on the objective, with
this strategy, the B&P approach can have more difficulty to
converge towards an optimal solution. Hence, we propose a
third branching strategy, S3, that is a hybrid of S1 and S2.
It applies the first branching strategy, S1, but gives priority
to shifts containing a task. Specifically, we try to find a shift
se′

(1), e′ ∈ E , such that its corresponding variable has the
largest fractional value and it contains at least one task. If no
such shift exists, then we apply S1. Otherwise, we select the
shift se′

(2) �= se′
(1) with the second highest fractional value

and we use the same separation as in S1.
Note that, when no branching occurs with the different

proposed branching strategies, that means that no fractional
solution exists, and, hence, the solution is integer [see Barn-
hart et al. (2000), Côté et al. (2011b)].

5 Preprocessing of precedence constraints

Precedence constraints have a significant impact on the diffi-
culty of the problem. In some cases, a quick analysis of these
constraints allows us to reduce the time window associated
with a task and to eliminate some of them. For a task t ∈ T ,
let st and et be the start and end times of the time window
associated with t . A simple two-step preprocessing can be
implemented:

– In step 1, we try to reduce the time window of the tasks,
i.e., for t ∈ T and t ′ ∈ P(t), st = max{st ′ + lt ′, st }.
This is because t ′ must be performed before t and so t
cannot start in [st ′, st ′ + lt ′].

– In step 2, we check whether some precedence constraints
are always satisfied. That is, for t ∈ T and t ′ ∈ P(t), if
et ′ < st then P(t) = P(t) − t ′, since the two intervals
are disjoint.

123

192 J Sched (2014) 17:185–197

We repeat the preprocessing until no time window is
reduced. The reduction of the time windows associated with
the tasks decreases the number of nodes involved in the DAG
and therefore the time required to solve the pricing subprob-
lem. The preprocessing can also reduce the number of con-
straints in the model.

6 Computational experiments

We now present the results obtained with the grammar-based
B&P algorithm for the multi-activity multi-task SSP. We con-
sider the cases where, for an employee, the working periods
are fixed a priori or are flexible. Furthermore, we compare
the different formulations of the precedence constraints and
the different branching strategies.

The experiments were performed sequentially on a two-
processor quad-core Intel Xeon 2.4 GHz. The restricted
master problem was solved by CPLEX 12 with the dual
method. The B&P algorithm was implemented in C++
using the OOBB framework from Crainic et al. (2009).
The algorithm stops when the optimality gap is less than
1 % or when the processing time for an instance reaches
2 h (which is, in practice, an acceptable processing time
considering that the planning is done once for a whole
week).

Four different strategies are tested in this section. First,
we consider the two formulations of the precedence con-
straints described in Sect. 2.2. C1 is the case where con-
straints (8) are used and C2 is the case where constraints
(9) are used. Secondly, we test the three different branch-
ing strategies of Sect. 4.3, i.e., S1, where branching is per-
formed only on the activities, S2, where branching is per-
formed on the tasks and the activities, and S3, the hybrid
strategy.

For all the instances, to obtain an initial upper bound for
the B&P algorithm, we use a diving strategy to try to construct
an initial integer solution from the restricted master problem
of the root node. This strategy repeatedly fixes to one the
variable with fractional value closest to one until a feasible
solution is found. We consider only the columns added by the
column generation at the root, and the maximum processing
time is 30 min. In some cases, this initial solution has an
optimality gap lower than 1 % and it is then not necessary to
run the B&P algorithm.

6.1 The instances

We consider that an employee can perform a shift of 4 h or
a shift of 8 h with a break of 1 h for lunch. The hours of
work are from 6 a.m. to 7 p.m. When the working periods are
fixed, we know a priori the length and the start time of the
shifts assigned to an employee, and we have to decide which

activities and tasks he/she will perform. When the working
periods are flexible, an employee can perform a shift of 4 or
8 h which can start at any period within a given time window.
Within a shift of 8 h, after 4 h of consecutive work, we must
place a lunch of 1 h.

The instances are generated as follows. We start by gen-
erating a feasible schedule for each employee. From this
schedule, we derive the associated demand profile, and we
randomly add or remove demand in each time period to gen-
erate undercovering and overcovering. We also derive a set
of precedence constraints satisfied by this schedule. The time
windows for each task are then generated such that they are
centered on the start time of the corresponding task in the
generated schedule. We thus ensure that the precedence con-
straints are feasible. We consider that an employee has the
necessary skills to perform half of the set of activities and
tasks.

Furthermore, the minimum length of an activity is 30 min
and its maximum length is 4 h. We minimize the number of
transitions in a shift via a penalty ctr . We denote by Ae and
T e, respectively, the subset of activities and tasks that can be
performed by employee e ∈ E and by [wmint , wmaxt] the
time window associated with a task t ∈ T .

The instances are available online at the following address:
http://w1.cirrelt.umontreal.ca/~louism/Random_instances.
zip

6.2 Instances with fixed working periods

For the instances with fixed working periods, the start and
end times of the shift pieces, i.e, a continuous sequence
of work for each employee, are fixed a priori. Hence, the
position of the lunch periods are also known. We con-
sider a planning horizon of 1 week, which is divided into
periods of 15 min (672 periods in total) with 5 activities
and 50 tasks. Shifts pieces of 4 h are assigned such that
no employee works more than 40 h. Furthermore, no more
than two shift pieces, separated by a break of 1 h, can be
assigned to an employee per day. Two sets of instances have
been generated, one with 20 employees and another with 50
employees.

For employee e ∈ E , we consider a grammar for each
assigned shift piece. These grammars are represented by the
following productions:

– S [16,16]
ctr−→ J j J j̄ | J j , ∀ j ∈ Ae ∪ Te;

– Ja [2,16] → J ′
a, ∀ a ∈ Ae;

– J ′
a → a | a J ′

a, i f a ∈ Ae;
– Jt

[twst ,twet][lt ,lt] → st J ′
t , ∀ t ∈ Te;

– J ′
t → t | t J ′

t , ∀ t ∈ Te;
– J j̄ → J j ′, ∀ j ∈ Ae ∪ Te, ∀ j ′ ∈ Ae ∪ Te − { j};
– J j̄

ctr−→ J j ′ J j̄ ′ , ∀ j ∈ Ae ∪ Te, ∀ j ′ ∈ Ae ∪ Te − { j}.

123

http://w1.cirrelt.umontreal.ca/~louism/Random_instances.zip
http://w1.cirrelt.umontreal.ca/~louism/Random_instances.zip

J Sched (2014) 17:185–197 193

Table 1 Solution at the root
with 20 employees and fixed
working periods

a Average values do not include
instance PF_20_0

Instance C1 C2

columns Gap (%) Time (s) # columns Gap (%) Time (s)

PF_20_0 41,213 3.39 95.54 39,974 – 1800.00

PF_20_1 38,170 2.53 79.17 38,700 2.53 87.05

PF_20_2 40,166 35.96 102.68 41,621 23.52 90.58

PF_20_3 39,195 0.00 187.86 40,056 22.90 174.37

PF_20_4 41,742 3.85 132.28 42,566 3.96 81.77

PF_20_5 44,384 7.42 121.26 44,678 25.08 98.08

PF_20_6 41,123 3.10 102.09 40,553 7.49 113.84

PF_20_7 37,314 0.00 93.80 40,923 0.00 107.03

PF_20_8 40,964 2.43 95.09 40,468 15.66 98.51

PF_20_9 37,804 8.73 86.23 39,593 13.11 74.94

Average 40207.50 6.74 109.61 40913.20 12.69a 102.91a

Table 2 Solution at the root
with 50 employees and fixed
working periods

Instance C1 C2

columns Gap (%) Time (s) # columns Gap (%) Time (s)

PF_50_0 83,330 0.86 203.57 83,173 38.20 313.42

PF_50_1 84,118 13.73 244.54 81,939 17.84 345.62

PF_50_2 82,221 6.31 150.91 80,122 17.34 271.11

PF_50_3 80,909 0.08 172.90 80,479 27.20 238.51

PF_50_4 81,200 17.48 204.43 83,163 27.49 173.23

PF_50_5 79,080 6.00 157.10 83,451 0.85 193.42

PF_50_6 84,123 27.24 247.54 87,119 64.42 549.77

PF_50_7 84,811 3.10 173.84 81,421 13.13 214.22

PF_50_8 82,465 2.88 243.40 82,585 37.95 282.23

PF_50_9 83,727 9.63 321.62 82,771 35.94 295.28

Average 82598.40 8.73 211.98 82622.30 28.04 287.68

6.2.1 Solution at the root

Tables 1 and 2 give the results obtained by solving the RM P
at the root node using a diving strategy. The results show that,
for C1, the solution provided by the root node is generally
close to optimality. However, for C2, in one case no feasible
solution was found within the allowed processing time, and
the final gaps are generally larger than for C1.

6.2.2 B&P

The B&P algorithm is initialized with the bound obtained at
the root. Tables 3 and 4 give the optimality gaps obtained
with the different strategies.

When the average optimality gap is already small at the
root (< 5 %), it is only slightly improved, but when the aver-
age optimality gap at the root is large (≥ 5 %), the improve-
ment is generally significant.

Table 3 Optimality gap (%) with 20 employees and fixed working
periods

Instance C1 + S1 C1 + S2 C1 + S3 C2 + S1 C2 + S2 C2 + S3

PF_20_0 3.18 3.18 3.18 7.18 7.18 3.18

PF_20_1 2.45 2.45 2.45 2.45 2.45 2.45

PF_20_2 4.25 4.25 4.25 4.41 4.41 4.16

PF_20_3 0.00 0.00 0.00 1.60 1.60 0.05

PF_20_4 3.85 3.85 3.85 3.87 3.87 3.85

PF_20_5 2.79 2.79 2.92 3.10 2.79 2.79

PF_20_6 3.10 3.10 3.06 3.11 3.11 3.10

PF_20_7 0.04 0.04 0.04 0.00 0.00 0.00

PF_20_8 2.34 2.29 2.34 2.47 2.61 2.29

PF_20_9 3.90 3.94 3.90 3.94 3.90 3.90

Average 2.59 2.59 2.60 3.21 3.19 2.59

The best results are obtained for formulation C1, and the
three tested branching strategies give similar results. Using
formulation C1, five of the 20 instances are solved within

123

194 J Sched (2014) 17:185–197

Table 4 Optimality gap (%) with 50 employees and fixed working
periods

Instance C1 + S1 C1 + S2 C1 + S3 C2 + S1 C2 + S2 C2 + S3

PF_50_0 0.70 0.70 0.70 2.31 2.31 0.70

PF_50_1 10.01 10.01 9.93 10.24 10.24 9.97

PF_50_2 1.58 1.57 1.58 1.70 1.70 1.58

PF_50_3 0.12 0.12 0.12 0.94 0.94 0.12

PF_50_4 2.43 2.43 2.39 4.57 4.57 2.35

PF_50_5 0.98 0.98 0.98 0.85 0.85 1.02

PF_50_6 7.64 7.64 7.56 8.71 8.71 7.56

PF_50_7 3.02 3.02 3.02 4.38 4.38 2.97

PF_50_8 2.75 2.75 2.75 2.75 2.75 2.75

PF_50_9 5.11 5.11 5.11 5.84 6.08 5.11

Average 3.43 3.43 3.41 4.23 4.25 3.41

the time limit (2 h) with an optimality gap lower than 1 %.
The remaining instances, except three, are solved with an
optimality gap lower than 5 %.

6.3 Instances with flexible working periods

For the instances with flexible working periods, we do not
know a priori when the shifts of each employee start and
end. An employee can work between 6 a.m. and 7 p.m. and
perform a shift of 4 or 8 h, i.e., two shift pieces of 4 h sepa-
rated with a lunch-break of 1 h. Hence, an 8-h shift last, in
fact, 9 h (8 h of work plus 1 h of lunch-break). Since these
instances are more difficult, we consider a planning hori-
zon of 1 day divided into periods of 15 min (52 periods in
total) with 5 activities and 5 tasks. Two sets of instances
have been generated, one with 20 employees and one with 50
employees.

For each employee e ∈ E , we build a grammar corre-
sponding to the possible shifts of the workday. To represent
the periods when the employee is not working, we use the
artificial activity r . The grammar is described by the follow-
ing productions:

– S [52,52] → R P R | RF R | P R | R P | F R | RF ;

– P [16,16]
ctr−→ J j J j̄ | J j , ∀ j ∈ Ae ∪ Te;

– F [36,36] → P L P;
– Ja [2,16] → J ′

a, ∀ a ∈ Ae;
– J ′

a → a | a J ′
a, ∀a ∈ Ae;

– Jt
[twst ,twet][lt ,lt] → st J ′

t , ∀ t ∈ Te;
– J ′

t → t | t J ′
t , ∀ t ∈ Te;

– J j̄ → J j ′, ∀ j ∈ Ae ∪ Te, ∀ j ′ ∈ Ae ∪ Te − { j};
– J j̄

ctr−→ J j ′ J j̄ ′ , ∀ j ∈ Ae ∪ Te, ∀ j ′ ∈ Ae ∪ Te − { j};
– R → r |r R;
– L [4,4] → r |r R.

6.3.1 Solution at the root

Tables 5 and 6 give the optimality gaps obtained by solving
the RM P at the root node using a diving strategy. In contrast
to the previous instances, we can see an important optimality
gap for each formulation. This shows that these instances are
harder: it is more difficult to derive a good feasible solution.

6.3.2 B&P

Tables 7 and 8 give the optimality gaps obtained with the B&P
approach on the instances with flexible working periods. All
the instances with 20 employees, except for PV_20_7 and
PV_20_8, are solved with an optimality gap lower than 1 %
in less than 8 min. With 50 employees, 6 of the 10 instances
are solved exactly in less than 2 h. The best average gap for
all the strategies is less than 4 %. On average, the best solu-

Table 5 Solution at the root
with 20 employees and with
flexible working periods

Instance C1 C2

columns Gap (%) Time (s) # columns Gap (%) Time (s)

PV_20_0 18,847 73.32 41.82 18,098 52.71 40.38

PV_20_1 21,292 0.00 34.98 20,399 0.00 27.64

PV_20_2 18,282 23.92 76.25 18,312 43.94 47.50

PV_20_3 19,565 27.05 59.64 18,590 27.23 72.01

PV_20_4 15,328 52.09 45.77 14,685 35.11 29.03

PV_20_5 22,390 24.26 64.88 19,945 42.64 62.12

PV_20_6 18,918 21.50 40.36 19,084 28.75 31.47

PV_20_7 17,662 55.55 44.28 17,699 61.98 86.47

PV_20_8 17,185 54.92 38.08 17,569 48.12 48.16

PV_20_9 12,985 0.03 19.61 13,106 34.83 28.43

Average 18245.40 33.26 46.57 17748.70 37.53 47.32

123

J Sched (2014) 17:185–197 195

Table 6 Solution at the root
with 50 employees and with
flexible working periods

Instance C1 C2

columns Gap (%) Time (s) # columns Gap (%) Time (s)

PV_50_0 36,332 67.88 168.68 36,828 72.51 38.93

PV_50_1 31,523 64.79 143.84 30,161 66.20 139.56

PV_50_2 34,808 69.71 208.12 33,857 70.50 315.94

PV_50_3 31,524 68.82 127.62 32,172 77.23 178.71

PV_50_4 44,878 67.03 223.51 42,345 72.36 228.00

PV_50_5 38,473 54.92 173.53 41,203 69.57 233.83

PV_50_6 43,448 69.00 279.66 45,571 77.17 236.65

PV_50_7 33,798 68.87 149.30 31,163 79.64 142.08

PV_50_8 36,418 69.00 182.54 39,064 77.22 143.63

PV_50_9 31,669 64.34 149.36 33,415 66.05 256.86

Average 36282.11 66.44 180.62 36577.90 72.84 191.50

Table 7 Optimality gap (%) with 20 employees and with flexible
working periods

Instance C1+S1 C1 + S2 C1 + S3 C2 + S1 C2 + S2 C2 + S3

PV_20_0 0.09 0.09 0.09 0.93 0.93 0.93

PV_20_1 0.00 0.00 0.00 0.00 0.00 0.00

PV_20_2 0.00 0.00 0.00 0.00 0.00 0.00

PV_20_3 0.08 0.08 0.08 0.08 15.55 0.08

PV_20_4 0.18 0.18 0.06 0.07 0.07 0.07

PV_20_5 0.06 0.06 0.06 0.06 0.06 0.06

PV_20_6 0.00 0.00 0.00 0.00 0.00 0.00

PV_20_7 8.31 16.36 16.43 24.96 44.14 18.96

PV_20_8 11.95 11.95 37.45 12.97 12.97 12.97

PV_20_9 0.03 0.03 0.03 0.03 0.03 0.03

Average 2.07 2.88 5.42 3.91 7.38 3.31

tions are obtained with C1 + S1. However, for the instances
with 50 employees, C1 + S2 and C1 + S3 are able to obtain
a gap lower than 1 % for PV_20_9 . We also note that for-
mulation C1 shows a better behavior on the largest instances
than formulation C2, which seems to have more difficulty in
converging towards a good feasible solution.

6.4 Comparison of different strategies

From these results, we see that formulation C1 tends to pro-
vide the best solutions. In particular, for the instances with 50
employees with flexible working periods, C2 failed to find
good integer solutions. C2 provides a model with fewer con-
straints for which the linear relaxation is generally easier to
solve, but the relatively important optimality gap penalizes
the solution process of the B&P algorithm.

The branching strategies S1, S2, and S3 gave interesting
results. If we focus on formulation C1 which provides bet-
ter results in general, strategy S1 seems to lead to the best

Table 8 Optimality gap (%) with 50 employees and with flexible
working periods

Instance C1 + S1 C1 + S2 C1 + S3 C2 + S1 C2 + S2 C2 + S3

PV_50_0 2.53 2.53 2.53 2.53 0.00 2.53

PV_50_1 6.32 6.32 6.32 6.32 6.32 6.32

PV_50_2 4.72 22.25 4.72 27.17 38.33 19.49

PV_50_3 0.00 0.00 0.00 0.00 0.00 0.00

PV_50_4 0.00 0.00 0.00 0.00 0.00 0.00

PV_50_5 0.00 0.00 0.00 34.53 34.70 34.44

PV_50_6 14.10 14.29 37.59 23.41 13.32 13.02

PV_50_7 0.00 0.00 0.00 0.00 0.00 0.00

PV_50_8 0.00 0.00 0.00 0.00 0.00 0.00

PV_50_9 10.09 0.00 0.10 5.07 5.07 5.07

Average 3.78 4.54 5.13 9.90 9.77 8.09

gap on average, in particular for the instances with flexi-
ble working periods. The S2 and S3 branching decisions are
stronger because they try to force the placement of a task.
It appears from our results that the solution quality is quite
sensitive to this placement: in some cases (see for instance
PV_20_7, PV_50_2, and PV_50_6) it degrades the conver-
gence towards a good solution. Hence, S1 appears to be a
more stable strategy for formulation C1.

With formulation C2, however, strategies S2 and S3 lead
to better results than strategy S1. In this case, the precedence
constraints are less explicit than in formulation C1, hence
branching on the positioning of a task seems to be the better
strategy.

For the strategies C1 + S1 and C2 + S3, which gave on
average the best results for, respectively, formulation C1 and
formulation C2, Table 9 displays the total number of nodes
explored by the B&P (# Nodes), the time to reach the best
solution (CPU BS), the average time spent in solving the
grammar subproblems (CPU GR), the average time spent in

123

196 J Sched (2014) 17:185–197

Table 9 B&P statistics

Instances with
fixed working
periods

Instances with
flexible working
periods

Number of
employees

20 50 20 50

C1 + S1

Nodes 6361.80 3309.10 369.10 1297.10

CPU BS (s.) 169.49 115.80 190.95 1183.35

CPU GR (s.) 708.37 681.50 119.65 404.72

CPU CG (s.) 6223.64 5468.44 1677.83 4548.44

CPU Total (s.) 6248.02 5488.45 1679.49 4552.52

C2 + S3

Nodes 5095.60 2998.30 320.70 1050.00

CPU BS (s.) 121.26 192.76 316.92 2121.89

CPU GR (s.) 726.45 938.41 83.70 404.41

CPU CG (s.) 7009.57 6247.80 1663.16 5400.12

CPU Total (s.) 7027.76 6262.73 1664.06 5405.91

solving the linear relaxation of the model with the column
generation (CPU CG), and the average total computation time
(CPU Total). In all cases, we can see that less than 15 % of
the processing time is used to generate new columns for the
column generation. Almost all of the processing time is spent
in the column generation for solving the linear relaxation of
the model. Furthermore, we note that, in general, formulation
C1 converges faster towards a good solution than formulation
C2.

Our B&P algorithm finds integer solutions for the SSP
and gives an approximate optimality gap. The convergence
towards an integer solution is relatively fast, but the symme-
tries of the problem lead to numerous equivalent solutions
and make it difficult to prove optimality. These symmetries
arise because many employees, although they have different
skills, can perform the same job in the same period. Thus,
the same shift can be assigned to many employees.

7 Conclusion

We have presented a set covering model for the shift schedul-
ing problem with multiple activities and multiple tasks,
together with two formulations of the constraints on the
sequence of execution of the tasks. We have considered the
personalized case, i.e., each employee has different availabil-
ities and skills. This model is solved via a B&P algorithm
using a grammar-based column generation for the solution
of the restricted master problem. This restricted problem con-
tains only a subset of the feasible shifts for each employee.

We have shown that the grammar can be used efficiently to
model feasible shifts with complex constraints such as time
windows for the tasks, employee skills, the placement of

breaks, and the length of an uninterrupted working period.
The resulting grammar can be used to find shifts with the
most negative reduced costs and hence to select nodes to add
at each iteration of the column generation. Grammars are
convenient because they can be expressed via simple rules
that are used to construct the associated decision tree used in
our algorithm.

We have presented results for instances inspired by
real cases with three branching strategies. We considered
instances with up to 50 employees where the working peri-
ods are fixed a priori, with a time horizon of one week, and
where they are flexible, with a time horizon of one day. The
results showed that the B&P algorithm can find an integer
solution for all the instances within 2 h with an optimality
gap lower than 5 % in the best case.

Other branching strategies could be implemented, for
instance, one could consider the choice of the employee to
branch on or the choice of the activities to forbid. However,
in our tests, we did not identify any better criteria for the
selection of the employee and the activities to forbid than the
ones proposed in this paper.

Our B&P approach could be improved with the use of a
heuristic to compute upper bounds at each node. This heuris-
tic should handle the precedence constraints and the demand
for tasks, because the objective value is sensitive to their
placement. One approach could be a local search on the
columns added so far. Such a heuristic could improve the con-
vergence of our method and hence reduce the overall number
of nodes that must be explored.

References

Barnhart, C., Hane, C. A., & Vance, P. H. (2000). Using branch-and-
price-and-cut to solve origin-destination integer multicommodity
flow problems. Operations Research, 48(2), 318–326.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W.
P., & Vance, P. H. (1998). Branch-and-price: Column generation for
solving huge integer programs. Operations Research, 46(3), 316–
329.

Contreras, I., Díaz, J., & Fernández, E. (2011). Branch and price for
large-scale capacitated hub location problems with single assign-
ment. INFORMS Journal of Computing, 23, 41–55.

Côté, M. C., Gendron, B., Quimper, C. G., & Rousseau, L. M.
(2011a). Formal languages for integer programming modeling of
shift scheduling problems. Constraints, 16(1), 54–76.

Côté, M. C., Gendron, B., & Rousseau, L. M. (2011b). Grammar-based
integer programming models for multiactivity shift scheduling. Man-
agement Science, 57(1), 151–163.

Côté, M. C., Gendron, B., & Rousseau, L. M. (2012). Grammar-based
column generation for personalized multi-activity shift scheduling.
INFORMS Journal of Computing. doi:10.1287/ijoc.1120.0514.

Crainic, T. G., Frangioni, A., Gendron, B., & Guertin, F. (2009).
OOBB: An object-oriented library for parallel branch-and-bound.
In: CORS/INFORMS international conference, Toronto, Canada.

Dantzig, G. B. (1954). A comment on Edie’s “Traffic delays at toll
booths”. Journal of the Operations Research Society of America,
2(3), 339–341.

123

http://dx.doi.org/10.1287/ijoc.1120.0514

J Sched (2014) 17:185–197 197

Demassey, S., Pesant, G., & Rousseau, L. M. (2006). A cost-regular
based hybrid column generation approach. Constraints, 11(4), 315–
333.

Desaulniers, G., Desrosiers, J., & Solomon, M. M. (2005). Column
generation. New York: Springer.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D.
(2004a). An annotated bibliography of personnel scheduling and
rostering. Annals of Operations Research, 127(1), 21–144.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004b). Staff
scheduling and rostering: A review of applications, methods and
models. European Journal of Operational Research, 153(1), 3–27.

Hopcroft, J. E., Motwani, R., & Ullman, J. D. (2001). Introduction to
automata theory, languages and computability. Boston: Addison-
Welsey.

Lequy, Q., Bouchard, M., Desaulniers, G., Soumis, F., & Tachefine,
B. (2010a). Assigning multiple activities to work shifts. Journal of
Scheduling, 15(2), 239–251.

Lequy, Q., Desaulniers, G., Solomon, M. M. (2010b) Assigning team
tasks and multiple activities to fixed work shifts. Cahiers du GERAD
(G-2010-71). Montreal: HEC Montreal.

Lequy, Q., Desaulniers, G., Solomon, M. M. (2010c) A two-stage
heuristic for multi-activity and task assignment to work shifts.
Cahiers du GERAD (G-2010-28). Montreal: HEC Montreal.

Quimper, C. G., & Rousseau, L. M. (2009). A large neighbourhood
search approach to the multi-activity shift scheduling problem. Jour-
nal of Heuristics, 16(3), 373–392.

Quimper, C. G., & Walsh, T. (2007). Decomposing global grammar
constraints. In: Principles and practice of constraint programming-
CP 2007. Lecture notes in computer science (Vol. 4741, pp. 590–
604). New York: Springer.

Tang, L., Wang, G., & Liu, J. (2007). A branch-and-price algorithm to
solve the molten iron allocation problem in iron and steel industry.
Computers & Operations Research, 34(10), 3001–3015.

Tang, L., Wang, G., Liu, J., & Liu, J. (2011). A combination of
lagrangian relaxation and column generation for order batching
in steelmaking and continuous-casting production. Naval Research
Logistics, 58(4), 370–388.

van den Akker, J. M., Hoogeveen, J. A., & van de Velde, S. L.
(1999). Parallel machine scheduling by column generation. Oper-
ations Research, 47(6), 862–872.

123

	A branch-and-price algorithm for the multi-activity multi-task shift scheduling problem
	Abstract
	1 Introduction
	2 The shift scheduling problem (SSP)
	2.1 Mathematical formulation
	2.2 Precedence constraints

	3 Modeling shifts with grammars
	3.1 Context-free grammar
	3.2 Directed acyclic graph
	3.3 Enriched grammar
	3.4 Productions of tasks

	4 Grammar-based B&P algorithm
	4.1 Restricted master problem
	4.2 Pricing subproblem
	4.3 Branching strategy

	5 Preprocessing of precedence constraints
	6 Computational experiments
	6.1 The instances
	6.2 Instances with fixed working periods
	6.2.1 Solution at the root
	6.2.2 B&P

	6.3 Instances with flexible working periods
	6.3.1 Solution at the root
	6.3.2 B&P

	6.4 Comparison of different strategies

	7 Conclusion
	References

